
Inl. J. S.d..d., SlruTIU,,"' Vol. 20. No. S. 1'1'. 42~ 4)K. 1~K4

Prinled in Orcat Brit.in.
0020 76113/K4 $3.00 + .00

~rpmon Press LId.

CALCULATED ELASTIC CONSTANTS OF COMPOSITES
CONTAINING ANISOTROPIC FIBERS

S. K. DAITA
Department of Mechanical Engineering. University of Colorado. Boulder. CO 80309. U.S.A.

and

H. M. LEDBEITER and R. D. KRIZ

Fracture and Ddormalion Division. National Bureau of Standards. Boulder. CO 80303. U.S.A.

(Received 19 July 1982; in revised form 9 February 1983)

Abstl'lld-By a wave-scallering method. we derive dispersion relationships for waves propagating per­
pendicular to continuous fibers that are oriented unidirectionally. In the long-wavelength limit one obtains
relationships that predict the composite's effective static clastic constants. Wc compare these relationship~

with others derivcd by energy methods 10 obtain upper and lowcr bounds of the effective stalic moduli. We
demonstrate them graphically by plolling for graphite-epoxy the prcdicted composite conslanls over Ihe full
range of fiber volume fractions. We consider the fibers to be anisotropic. but transverscly isotropic. Under
special conditions. Ihe energy-method upper and lower bounds compare idcnlically wilh the results of this
study. The static properties are. of course. special cases of the more general dispersion rclationships.
Graphs are given for nine elastic constants: axial and transvcrse Young's and shear moduli. bulk and
plane-strain bulk moduli. and three Poisson's ratios.

I. INTRODUCTION

In recent years, both theory and observation of fiber-reinforced composites have advanced
dramatically. Reviews of this subject include those on theory by Hashin[I], Sendeckyj[2], and
Walpole[3], and on experiment by Bert[4].

In practice, two types of fiber reinforcement occur: continuous-fiber and short-fiber (chop­
ped-fiber). Most studies consider only the first type, which we consider here.

Most previous studies calculated overall (effective) static elastic constants or bounds of
such constants. Interested readers should see [5-14] for relevant studies. Some authors consid­
ered wave propagation in fiber-reinforced composites both for fibers in periodic arrays [15, 16]
and for fibers distributed randomly[17-19].

Random distributions of identical, long, and parallel fibers form the subject of the present
study. We focus on the propagation of plane longitudinal and shear waves propagating
perpendicular to the fibers. We use a multiple-scattering approach to obtain a dispersion
relationship. This relationship governs both propagation velocity and frequency of the incident
wave. We make three simplifying assumptions: (1) random and homogeneous fiber distribution,
(2) Lax's quasi-crystalline approximation, (3) wavelength long relative to fiber diameter. In this
long-wavelength limit, one obtains effective static elastic constants that agree well with results
obtained by other methods. For a graphite-epoxy composite, we consider fibers to be anisotro­
pic, and we obtain elastic constants for all volume fractions.

2. FORMULATION

Consider a system of long circular cylindrical fibers embedded in an infinite matrix. We
assume that the matrix is isotropic and homogeneous with Lame constants Aand p, and mass
density p and that the fibers are transversely isotropic with the axis of symmetry coincident
with the fiber axis. We consider two problems. First, the propagation of shear waves moving
perpendicular to the fibers. Here the particle motion is assumed to be parallel to the fibers. This
SH-wave problem was considered in [17, 19, 20]. The second problem is that of propagation
perpendicular to the fibers with the particle motion also perpendicular to the fibers. Details of
the calculation for the first problem are given below. The second problem can be analyzed
similarly, except that the algebra is much more complicated because of its vector nature.
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2.1 Shear wave polarized parallel to fiber
Let the fibers be labeled I, 2, ... , N and let (ri' 6J be the polar coordinates of the center OJ

of the ith fiber. The z axis is the fiber axis. We assume that the fibers are identical in geometry
and material properties, although for the following analysis this assumption is not necessary. In
a customary notation, the fiber elastic constants are denoted by Cji(i, j = 1-6). Since the fibers
are assumed transversely isotropic there are only five independent constants: C\Io C\2, C1,. Cn

and C44 •

For the pr('blem considered in this section, the only elastic properties that enter the
calculation are C.. and 1-'. Thus, the analysis follows closely that in [16] and is a special case of
that in [19], which deals with elliptical-cross-section inclusions.

Let an SH wave given by

(I)

be incident on the medium considered. Here u represents particle displacement, C2 the
shear-wave speed in the matrix, and 'Y the circular frequency.

This incident wave will be scattered by N fibers and the scattered field is given, using rotation in
[20]. by:

N

U,IS) = L T(rj)u/(rlrj)
ial

(2)

where u/ is the field near the ith scatterer and will be called the exciting field [20). The
operator T(rJ operating on u/ gives the scattered field due to the ith scatterer. It is well
known, see [20]. that Tu/ can be written

"
T(r;)u/(rl r;) = L I-'n[A)n cos (neP;) + A7n sin (nePi)]Hn(j3Rj )

naO
(3)

where J.lo = 1/2, I-'n = I (n > 0), Rj and ePi are shown in Fig. I, and Hn and I n are Hankel and
Bessel functions of the first kind. The coefficients Aln and A~ depend on the boundary
conditions at the surface of the fibers and are not generally obtainable in closed form. Equation
(2) can be rewritten as

"
u/ ')=L I-'.[A)n cos (neP;) + A~. sin (nePi)]Hn(j3Rj )

.-0

(4)

81
O~~..:...._--------x

Fig. I.
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where

'"al" = L /oL,,,[(-l)m(A j.,,.,,, + (-I)"A j. ",,,,) ejll'H" +(A,,, /I, + (-I)"A;. "/I,le'i'''H'')H",(l3r,j) (5)
UI n

x

a~,= L i/oL",{(-l)m(A;./I.",-(-t)"A j.. II .",)eim""+(A,./I ",-(-I)"A;" ",)e' im8"]H",(/3rjj) (6)
,,, n

where

The boundary conditions on the ith scatterer are:

( (il+ C.• I) I _ 'Iu. Uz R,=a - U: R,=.

and

Here u~ is the field within the ith scatterer and can be expanded in the form:

"
u~ =L /oLIl[A:~ cos (III/>;) + Ai;' sin (n~;)]J.(/3R;)

,,-0

where

Os Ri <a.

(7)

(8)

(9)

Substituting (I), (4), and (9) into (7) and (8) yields a set of equations for the unknowns AI.,
MIl,A;~, and Ai;'. The solution for A~1l and A;II can be written as

A I - T"'I' I' A~ - T"~" ,.
i'l - "," a illl" in - NUl cr jill

where

I -2UI""eilJ"'+~al ~ -~a2aim - n inl' aim - ~ jm o

j I jli

The repeated index implies summation over that index. It can be shown that

where

(10)

(II)

Similar expressions can be obtained for A:~ and Ai;'.
Having the formal expressions (or the scattered field we now proceed to take ensemble
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averages. For this purpose we assume a homogeneous fiber distribution. In this case the
position of a single fiber is equally probable within the region S, the total specimen area. Hence
its distribution, p, is uniform with density:

( ) _{l/S,riES;p ri -
O,ri~S,

(12)

Having the center of the ith fiber at OJ the conditional probability density of the jth fiber at rj is:

where the pair-correlation function /('12) has the property:

{
I,ry <2a

j(r;) =
approaches 0 as rij approaches ex) •

(13)

(14)

For the purpose ofthis study we assume thatj(ry) = 0, which is asymptotically valid for small
fiber concentrations. Neglectingj(ry)implies no pair correlations, an assumption discussed
by Bose and Mal [18]. Equation (13)impliesan isotropicdistribution. Together with the quasi­
crystalline approximation made below in (17), this has been shown[21] to lead to optimum
bounds. By optimum we mean with respect to the Hashin-Shtrikman variational principle [22]
for isotropic distribution of spherical inclusi~ns in an isotropic matrix. Equation (14), often
called the "well-stirred" approximation, becomes invalid at high concentrations. Nevertheless,
we expect from the discussion in [21] that the present study will lead to the general bounds [23,
24] in the long-wavelength limit.

Taking now the ensemble average of the total field u, we obtain:

+ "0 r dr;T'(r;)(u/(rlrJ).
J1'- 'il:s a

where /lu is the number density of the fibers and C = nU'lTa
2
•

The average exciting field on the scatterer at rj is given by:

(15)

(16)

It is seen that the first partial average of the exciting field at rj depends on the second partial
average of the same. An equation for the second partial average will depend on the third, and so
on.

This hierarchy is terminated here by making the quasi-crystalline approximation that requires

This makes (16) an integral equation for (u/(rlrJ).
To solve this equation it may be assumed that

co

(u,E(rlr;» =L ILn[alncos (n4>i) +b In sin (n4>j)]Jn(f3R j ).
n-O

(17)

(18)
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A co

T(r;)(u/(rlr;» = L J.L,,[A~cos(ncPj)+ A~sin(ncPj))HII(fJRJ
11-0
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(19)

Thus we obtain:

I 2 'p ill'; + i dr ~! {(TA •• TA2
.)aip = Uol e no j £J 2 ILII IIq - IIq

Ir,-rjl>20 II =0

x [Hp- II ({3rij) e-ilp-nI8'i +(-I)"Hp +n e;IP+nI8ij]

+(T ~~ +i T~~)[Hp_II eiIP-IIl8;i +(-I)"Hp +n e
i
(P+n16ii)} a j'q (20)

2 - ~ d ~ 1 {(T I. • TA 2')[H '-;(p-nI8"a;p - no Ir-r;I>20 r; £J 2- ILn IIq - I IIq p-n e "
, 11=0

- (- IrH ei(P+ n)lllJ] - (fir + ;f2')[H e i(p-lI)/Jij
P+1I 111I 111I p-1I

(21)

Equations (20) and (21) define a pair of integral equations in the unknowns alp and arp. If it is
assumed that an effective plane wave is propagating through the medium, then a solution for a7p
may be assumed in the form

a~ = X • e illo
.;.p p

where yl{3* is the wave velocity of the plane wave.
The coefficients X; form a set of linear homogeneous algebraic equations. These are:

X 1__ 21Tnoa ~ 'P-IIT h X '(1. A)
P - Q*2 _ Q2 £J ILII I IIq q "lP-1I +"lP+1I

I" I" 11-0

X 2 __ 21Tnoa ~ .p-nf 2·x '(1. A)
P - Q*2 _ Q2 £J ILII I nq q "lp-n +"lp+n

,., ,., n=-O

where

(22)

(23)

(24)

(25)

Because of relationships (11), Xp
l and X/ are uncoupled. However, for noncircular-cross­

section fibers they are coupled. The dispersion equation is obtained by equating the coefficients
of xi and X/ to zero. For an arbitrary wavenumber the dispersion equation is rather
complicated. We can approximate this equation by assuming that {3a is small; this means the
wavelength is long compared to the fiber diameter. For small {3a and {3'a the following
relationships can be obtained, which are correct to order ({3a)2:

and

ss Vol. 20. No. S. B

1T ( 2 pi , C 1T ( )2 C.... - ILCO=- {3a)( p -1) .=- f3a
4 '4 C.... +IL

Cm =0 for m~2

(26)

(27)
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Substituting (26) into (11), and then into (23), and using (27) one obtains:

(28)

Because of (26) the infinite series can be terminated after n = I. This yields two simultaneous
homogeneous equations in XO

I and XII. Equating the determinant of the coefficients to zero
gives the dispersion relationship:

(~*)2 / 1- C(m - l)/(m + I)Ii = [1+ C(p /p - I)] 1+ C(m -l)/(m + I)

where m = C44/1L and C is the fiber volume fraction.
Defining the average density as

p* = p[1 +C(p'/p - 1)]

and

13* = 'Y/c~, c~ = V(ILU/P*)

where ILt:r is the effective axial shear modulus, one obtains:

IlI..T 1+ C(m - I)/(m + I)
Ilm = 1- C(m - I)/(m +I)

(29)

(30)

(31)

(32)

where til is the ratio of fiber and matrix shear moduli (Il::r/Il",).
Equation (32) was obtained by Hashin and Rosen[25] using the composite cylinder assem­

blage (CCA) model. The expression for J-hr obtained from (32) coincides with the lower
(upper) bound when the fiber shear modulus, J.l~n is larger (smaller) than the matrix shear
modulus, J.l.m'

2.2 Longitudinal and shear waves polarized perpendicular to fiber
Propagation of longitudinal and shear waves polarized transverse to the fibers was studied in

[18] using the same approach outlined above. It was shown that if ~a and aa were assuJTled
small then the dispersion relationships reduce to effective longitudinal and shear moduli
transverse to the fibers. These are:

where

CII _1-CP2(1-132/a2)-2c2PoP2
Am +21lm - (t +CPo)[1 +CP2(1 +~2/(2)]

(33)

(34)

The effective transverse plane-strain bulk modulus, K n can be obtained from eqns (33) and (34)

as:

(35)

where K.j- is the fiber plane-strain bulk modulus and the matrix Lame constants are Am and ILm·
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Equation (35) is the same as derived by Hashin and Rosen [25] using the CCA model.
However, the CCA model does not yield an expression for the effective transverse shear
modulus. Instead, bounds for the transverse shear modulus are noted. Expression (34) for ILrr
is identical to the general lower (upper) bound derived for arbitrary phase geometry [23, 24] if
~trr and Kr are larger (lower) than IL... and K"" respectively, where Kill = Alii + ILIIl is the
plane-strain bulk modulus of the matrix.

Knowing the expression for K1, one can predict the effective longitudinal Young's modulus
and Poisson's ratio using relationships derived by HiII[23]. When both fiber and matrix phases
are transversely isotropic, Hill shows that:

(36)

(37)

where EL and IIh are the axial Young's modulus and axial Poisson's ratio of the fiber. The
quantities subscripted with m designate the isotropic matrix properties.

For a unidirectional fibrous composite with transversely isotropic fibers, this completes the
derivation of the five independent effective elastic properties: KT, EL, liLT> ILm PoLT' Other
elastic properties of physical significance can be calculated from the five effective properties.
For instance, assuming isotropy in the transverse plane, T, the Poisson's ratio, "m and the
Young's modulus, En can be calculated from the isotropic relationships. Thus,

(38)

(39)

where

The remaining Poisson's ratio, lin, is calculated from the relationship obtained from the
elastic-compliance symmetry condition:

(40)

If the composite behaves transversely isotropic with the unique symmetry axis along Xl,

then the elastic-stiffness constants, Cij, can be computed from

CII = Cn =KT+ Porr (41)

Cll =EL+2I1L~13 (42)

C.... =C" =PoLT (43)

CI2 =KT- Porr (44)

Cll =Cn =211LTKT (45)

C66 =(C11 - Ct.J/2 =Porr· (46)
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One can also calculate the bulk modulus, B, from

B =ij, ,L, C;;jj ={E,. +4Kr [1 + V/.T(V/.T +2)]}/9.
1.'-1 ••..'

(47)

RESULTS AND DISCUSSION

The effect of fiber volume fraction, C, on the predicted elastic constants can now be
demonstrated given the isotropic matrix properties and the transversely isotropic fiber proper­
ties. The matrix and fiber elastic constants, listed in Table 1, were obtained from [26] where the
fiber elastic properties were extrapolated from experiments of Dean and Turner[27] using the
transversely isotropic relations derived by Hashin[l]. This extrapolation of fiber properties was
done with the correction fJ2 = KT/(K:" +2#Lrr) noted in [28]. The elastic properties (IIITo IIrt> 'IILr,
#LITo En #LLn El.t Kn B) are shown in Figs 2-5.

As noted above, the curves for Kn #LITo and #LLr coincide with the general lower
bounds [28] for the particular constituent properties considered here. Of the nine elastic constants
shown in Figs. 2-5, ELbest fits a simple rule of mixtures. (The correction term in (36) can be
neglected.) Both Band IILr come close to fitting this rule; #LITo Kr , and Er do not differ
dramatically from linearity; but #LTn IIITo and lin do so differ. Except for IIrr and Er all
deviations from linearity are negative, that is, the curves are concave. The IIrr curve is convex.
The Er curve is convex at low fiber fractions and concave at high. This reflects the abrupt rise
of IIrr at low fiber fractions combined with the slow, steady rise of #Lrr. For those constants
that differ strongly from a rule of mixtures, both IIrr and lin are fiber-property dominated while
#Ll.r tends to be matrix-property dominated. The latter represents, of course, shear in the fiber
direction.

Table I. Matrix and fiber elastic constants, ref. (26]

E G v
(GPa) (GPa)

.Epoxy 5.35 1.95 0.353

Graphite fiber (L) 232.0 24.0 0.290

Graphite fiber (T) 15.0 5.02 0.490
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4. CONCLUSIONS

Using a multiple-scattering approach, effective elastic constants of a graphite-fiber-rein­
forced epoxy composite were derived in this study. Graphite fibers were assumed to be
anisotropic, but transversely isotropic. It was shown that the composite can be characterized as
a transversely isotropic medium. All five elastic constants characterizing the composite were
calculated. These elastic constants coincide with the general lower bounds of those obtained in
[1, 23. 24] using energy methods.
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